Fall 2013

Name: _____

Quiz 3

Question 1. (10 pts)

Determine if the given subset is a subspace of the corresponding vector space. (Show work!).

(a) (5 pts) The subset of \mathbb{R}^3 :

$$W = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z \ge 0 \}$$

Solution: Consider u = (1, 1, 1). By assumption, u is a vector in W. Now take $k = -1 \in \mathbb{R}$. We have (-1)u = (-1, -1, -1),but (-1) + (-1) + (-1) = -3 < 0. So (-1)u is not in W. We conclude that W is not a subspace.

(b) (5 pts) Let $\mathcal{M}_{n \times n}$ be the vector space of all real $n \times n$ matrices.

$$W = \{A \in \mathcal{M}_{n \times n} \mid \operatorname{tr}(A) = 0\}$$

Solution: Recall that

$$tr(0_{n \times n}) = 0,$$

$$tr(A + B) = tr(A) + tr(B),$$

$$tr(kA) = ktr(A).$$

Now use these to verify the conditions for W to be subspace. We conclude that W is a subspace.

Question 2. (10 pts)

Given $u_1 = (1, 0, 1)$, $u_2 = (0, 1, 2)$ and $u_3 = (2, 2, 6)$ in \mathbb{R}^3 .

(a) (5 pts) Determine whether u_1 , u_2 and u_3 are linearly independent.

Solution: Form the matrix A whose rows are u_1, u_2, u_3 :

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 2 & 6 \end{bmatrix}$$

Use Gaussian elimination and get an echelon form of A

ſ	1	0	1
	0	1	2
	0	0	0

_

which implies u_1 , u_2 and u_3 are *not* linearly independent.

(b) (5 pts) Determine whether v = (0, 0, 1) is in the span of $\{u_1, u_2, u_3\}$.

Solution: The idea is similar to Part (a). But this time, form the matrix B whose columns are u_1, u_2, u_3 :

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 6 \end{bmatrix}$$

We consider the augmented matrix

$$\begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 1 & 2 & 6 & | & 1 \end{bmatrix}$$

Use Gaussian elimination again and we have

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

which implies the system has no solution. So v is not in the span of $\{u_1, u_2, u_3\}$.